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FAR INFR.ARED ABSORPTION EN LIQUEFIED GASES 

M,  C ,  Jones 
Cryogenics Division 
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ABSTRACT 

Experimental results a r e  given for the absorption 
coefficient of the liquids hydrogen (three para concentra- 
tions), nitrogen, oxygen, carbon monoxide, methane and 
argon in the wavenumber range 20-250 c m  (40-500 pm) ,  
In addition, data for liquid hydrogen a r e  given at wave 
numbers up to 600 cK1 (16 .7  Ll m). The results a r e  
discussed i n  t e rms  of the induced dipole, and, in the 
case of carbon monoxide, the permanent dipole, An 
indication of the way i n  which the data may be employed 
in calculations of thermal radiative t ransfer  i s  made by 
calculation of the modified Planck mean absorption 
coefficient. 

Key Words: F a r  infrared; absorption coefficient; liquefied 
gase s; hydrogen; nitrogen; oxygen; carbon monoxide; methane; 
argon. 
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I ,  INTRODUCTION 

Absorption spec t ra  of simple molecules in  the far infrared are 

generally related to rotational transit ions.  F o r  transit ions involving 

permanent dipole moments the effect of increase  of density i s  to broadeii 

the rotational lines. However, a t  sufficiently high densit ies absorption 

a lso  occurs  in non-polar species  where none had been apparent a t  low 

densities. Such absorption i s  well known (e.  g. Bosomworth and Gush,  

1965) and i s  attributed to  e lec t r ic  dipole moments induced on collision 

by the quadrupole and higher multipole fields of neighboring ~ ~ ~ o l e c u l e  s, 

It i s  coaveniently studied a t  liquid densities where path lengths of a 

few cent imeters  a r e  sufficient for observation. Unfortunately, as with 

other phenomena dependent on collisions none of the theory of indl~ced 

absorption i s  applicable a t  these densities so that the resulting spectra. 

do not yield molecular constants (e.  g. quadrupole moments) ,  Never- 

theless,  because the spec t ra  resul t  exclusively from the molecu1a.r 

interactions of the liquid s tate  i t  was felt that an  exploratory i n v e s ~ ~ g d  - 
tion of severa l  simple molecular species would be useful apar t  from the 

value of such reference data a s  might result .  

In this  report  we present  the far  infrared spec t ra  of liquids 

hydrogen ( three  different para-hydrogen concentrations), nitrogen, 

oxygen, methane, and carbon monoxide. In addition, we have examined 

liquid argon i n  our absorption cell  and verified that within the uncer- 

tainty l imits  of our experiments  i t  does not absorb. Since the work 

involved the solution of severa l  problems peculiar to  this  type of 

measurement  we give a fair ly  full account of experimental details 

(sections 2 and 3 ) .  In section 4 the experimental resu l t s  a r e  presented 

and discussed and in  section 5 we indicate briefly the application of 

the data i n  calculations of thermal  radiative t r ans fe r ,  



2. EXPERIMENTAL 

2. 1 The Spectrophotometer 

The spectrophotometer could be used with conventional globar o r  

high p r e s s u r e  mercury  lamp sources,  crystal  choppers, res t s t rah len  

and wire  m e s h  reflection f i l ters .  The monochromator had an  ape r tu re  

ratio of f / 3 . 8  and used Littrow mounted gratings i n  f i r s t  o rde r  i n  a 

single pass  arrangement.  The detector was a Golay cell. In a l l  

measurements  reported here  the instrument was used in single beam 

operation using a lock-in amplifier to dr ive a char t  recorder  with 

reference signal taken f rom a breaker  on the chopper drive ( see  figure 

1.)  F o r  a l l  measurements  the instrument was kept purged with d ry  

nitrogen gas  f rom a boiling liquid nitrogen reservoi r .  

2.2 Optical Dewar and Liquid Absorption Cells. 

A special  dewar, figure 2, was constructed to  enable liquid 

cel ls  to be held a t  predetermined temperatures .  In all experiments  

liquid hydrogen was used a s  refrigerant in  the inner  container and a 

liquid cell  was attached a t  the lower end of the reflux tube - a thin- 

walled s tainless  s tee l  tube pas  sing through the refr igerant  container. 

Variable thermal  conductance between the refr igerant  and the liquid 

cell  could be obtained by variation of hydrogen gas p res su re  inside 

the reflux tube, The liquid cell  was surrounded by a nitrogen-tempera- 

ture  radiation shield except for  holes to  allow the passage of the 

spectrophotometer beam. When liquid hydrogen was used a s  sample,  

a second hydrogen-temperature shield attached to the refrigerant 

bath was used. The outer vacuum jacket of the dewar was fi t ted with 

1 / 8" thick polyethylene windows. 

Two choices of window a r e  available in the f a r  infrared, namely: 

c rys ta l  quartz  and polyethylene. Polyethylene i s  desirable  on account 
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Refrigerant Vents 

Liquid Nitrogen 

Liquid Hydrogen 

Radiat ion Shields Spectrophotometer Seal 
(Gold Plated ) 

Sample F i l l  L i n e  

Polyethylene Window Polyethylene Window 

Figure  2.  Optical Dewar.  
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REFLUX TUBE (3/4"0.0.) 

THERMOMETER 

THERMOME'I 
TEMPERING 

'ER LEAD 
GROOVE 

F i g u r e  3 .  A b s o r p t i o n  C e l l - Q u a r t z  W i n d o w  s o  Path Length 
Variable f r o m  4. 1 mm to 25.4 mm. 
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of i t s  wide spectral  range a s  a window (0  to 600 c m - l )  and again on 

account of the low reflectance los s  a t  a polyethylene/vacuum interface 

(about 570). However, i t  i s  l e s s  satisfactory than quartz where window 

rigidity i s  important. Our ea r l i e r  attempts a t  making vacuum tight 

low tempera ture  liquid cel ls  with polyethylene windows were,  however, 

unsuccessful due to  i t s  excessive shrinkage on cooling, and so experi-  

ments  were  begun using the cell  of figure 3. This cell  was fitted with 

c rys ta l  quartz  windows cut perpendicular to the x o r  y axes.  Crys ta l  

quartz  i s  readily sealed using indium wire a s  a gasket mater ia l .  How- 

ever ,  we found that a spring load on the seal  was required to  maintain 

the sea l  through tempera ture  cycles. This was achieved by use of the 

' U '  c r o s s  section s tee l  spring ring shown in  the figure. With i t  a force  

of 200 pounds was continually maintained against the window seal.  The 

path length of this cell  could be changed f rom 12.7 to 25.4 m m  by the 

inclusion of the spacer  shown. F o r  an  even shor te r  path length, 

4.1 mm,  one window could be ra i sed  by including a spacer  between 

window and seat.  

The cell of figure 3 was used for a l l  experiments on liquids 

nitrogen, oxygen, methane, carbon monoxide, and argon and some 

prel iminary runs with hydrogen. It had a usable wave number range 
- 1 

f rom 0 to 250 c m  and a n  almost  constant reflectance of 15 percent  

was measured  a t  a vacuum/quartz interface i n  this range. 

Fox measurements  on liquid hydrogen, where much of the in t e res t  
- 1 

i s  a t  wave numbers beyond 250 c m  , we eventually designed a success-  

ful polyethylene window sea l  and this i s  embodied i n  the cell shown i n  

figure 4, This cell  had a path length of 32 .5  m m  and could be used 
- 1 

where the absorption coefficient was l e s s  than about 1 c m  The 

polyethylene windows a r e  forced over the d rum forming the cell body 

with vacuum grease  a s  sealant. On cooling down, the outer flange 



VACUUM GREASE / [FILL L INE 

POLYETHYLENE 
WINDOWS 

GASKET THERMOMETER 

Figu re  5. Absorpt ion Cell-Polyethylene Windows, P a t h  Length  
5 , 9  mm. 



shrinks on to  the drum forming an ever  t ighter seal.  Whereas the 

cell  of figure 3 could be simply screwed to the end of the reflux tube, in  

o rde r  to obtain low enough tempera tures  for hydrogen liquid samples  in  

this  cell  we found i t  necessary  to extend the reflux tube in  the form of 

a channel around the cell. The cell body then simply slides into the 

yoke formed by this channel. Thermal  contact with the channel was 

maintained by use of a zinc-oxide-filled silicone grease.  

F o r  shor t  path lengths and higher p res su res  the design of figure 

5 was used i n  which the same window sealing principle i s  embodied, 

but now p r e s s u r e  in the cell  ac ts  to sea l  i t  further.  This cell can a l so  

be slid into the reflux channel yoke of figure 4, The path length was 

5.9 mm.  

All cel ls  were fitted with a single 1/8" diameter copper f i l l  

l ine, a 40 R heater and a well to receive a germanium resis tance t h e r -  

mometer  bulb. When liquid hydrogen was to be condensed into a cell ,  

the f i l l  t ime was shortened considerably by routing the f i l l  l ine down 

through the reflux tube, thereby precooling the incoming gas before i t  

entered the cell. F o r  a l l  other samples,  the f i l l  l ine remained on the 

outside of the radiation shields. 

2 .3  Thermometry and Temperature Control 

Tempera tures  of the sample cel ls  were measured with the 

germanium resis tance thermometer .  This had received a manu- 

facturer '  s calibration, but due to  the irreproducibili ty of the r e  s i s  - 

tance we checked i t  against tempera tures  obtained by measuring vapor 

p r e s s u r e s  of sample liquids in  half filled cells. This was done with 

liquids nitrogen methane and hydrogen. F r o m  our vapor p res su re  

determinations we feel that temperatures  quoted a r e  within 0 .  1 K, 

which i s  sufficient for these experiments.  
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Much m o r e  important than the absolute value of the tempera ture  

i tself  when using quartz  windows in the cell i s  the stability of the cell  

temperature.  The t ransmission of the quartz i s  quite tempera ture  

sensitive above about 25 K so it i s  necessary  to make t ransmiss ion  

measurements  with cell  empty and cell  full a t  t empera tures  within 

about 0. 1 K of each other .  With the control system shown schemati-  

cally i n  figure 6, control within a few hundredths of a degree was 

easily achieved. The same thermometer  a s  i s  used to indicate t emper -  

a tu re  via the amplifier and digital voltmeter i s  a l so  used to dr ive the 

controller by making use of an isolated analog output of the digital 

voltmeter.  

2 . 4  Liquid Samples 

All samples,  regard less  of their  origin were passed through a 

synthetic zeolite bed a t  room temperature before entering the cel l  to 

guard against possible moisture  inclusion. 

Normal hydrogen was obtained f rom a gas cylinder which was 

known to have been filled severa l  years  previously with para-hydrogen 

f rom storage boil-off gas. Such cylinders a r e  known to be a s  pure  a s  

the best  commercial  high purity hydrogen. 

Para-hydrogen was obtained f rom the boil-off of our  refr igerant .  

I ts  composition was found with a thermal  conductivity analyzer to be 

identical t o  samples which had been prepared by pas sing normal  

hydrogen over an i ron  oxide catalyst a t  20 K and i s  therefore considered 

to be essentially equilibrium hydrogen at  20 K, i. e. , 99 .8  percent  

parahydrogen. 

An intermediate concentration of parahydrogen was obtained by 

passing normal  hydrogen through an i ron  oxide catalyst held in a 

liquid nitrogen bath. This method produced a composition which varied 



somewhat with flow ra t e  a s  determined on the thermal  conductivity 

analyzer.  At the flow ra tes  used in  filling our  liquid cell  a composi- 

tion of f rom 44 to 48 percent parahydrogen was indicated. 

Nitrogen was obtained a s  boil-off gas  f rom commercial  liquid 

for which the manufacturers  analysis showed a typical purity of 

99,997 percent,  

Oxygen, methane, carbon monoxide, and argon were al l  obtained 

f rom cylinders with manufacturers  purity specifications of 99. 5, 

99.95, 99.5, and 99.996 percent respectively. 

2 .5  Experimental Procedure  

P r i o r  to taking data, the dewar was placed i n  the spectrophoto- 

me te r  and with al l  power on the assembly was allowed to reach steady 

ope rating conditions. 

With the absorption cell  evacuated and cooled down to the 

required temperature,  the transmitted signal was recorded for each 

of about 8 frequencies. At each frequency the signal was recorded 

when steady for up to five minutes with suitable filtering (up to a t ime 

constant of 100 secs) .  After this the sample gas was admitted to the 

cell  and condensed in. This process  was monitored by both gas flow 

ra te  and by  continuously recording the signal a t  a par t icular  frequency; 

the signal reduced until the beam became completely submerged. 

When gas flow had stopped the cell was returned to  i t s  original 

temperature and the signal recorded again a t  each of the chosen 

frequencies. On conclusion, the cell  was evacuated and again returned 

to i t s  original temperature to check the original cell  empty readings. 

Readings were repeated unless the cell empty readings agreed to  

within 2 percent. 



Finally,  at  each of the amplifier gain settings used, the signal 

w a s  recorded with the spectrophotometer s l i t  closed. This was neces-  

s a r y  d u e  to  the tendency of the Golay cell  to  pick up mechanical v ibra-  

ti on f rom the chopper and b reake r s ,  which being in constant phas.: 

relation to  the light signal, appear a s  a fa l se  signal. The resulting 

offset f r o m  the recorder  z e r o  i s  thus a function of the amplifier gain 

setting . 

3 .  RESULTS 

3 .  1 Data Reduction 

In deriving the absorption coefficient, a ,  f rom the recorded 

signals one mus t  take into account the phenomenon of dielectric mis- 

match a t  the window/liquid and window/vacuurn interfaces and the r e -  

sulting multiple reflections between pa i r s  of paral le l  interfaces.  In 

our c a s e  the multiple reflections would not give r i s e  to observable in te r -  

ference effects a s  m a y  easily be  shown. 

The resonant condition for paral le l  interfaces separated by a 

distance d i s  

where m i s  an  integer and h the wavelength. F o r  adjacent resonant  

wavelengths 

In our experiments the smallest  value of d was about 3 m m ,  therefore 

resonance separation A ($-) i s  about 1 . 6  cm- '  a t  the most .  Most of 

the data reported he re  were  taken with a spectral  s l i t  width approaching 
- 1 

10 crn s o  that each recorded signal represents  an average of seve ra l  

resonances and none would be  observed. 



The total  intensity a t  the detector may be  calculated by sum- 

ming the intensities from every possible path through the cell .  Referring 

to  figure 7 ,  
let Eijk 

and I be the amplitude and intensity of an emerg-  
ijk 

ing r ay  f rom a path in which there  were i double reflections inside the 

f i r s t  window, j double reflections between the windows and k double 

reflections inside the second window. Let  E and I be the incident 
0 0 

amplitude and intensity respectively and let  the  amplitude t ransmiss ion  

coe f f i c i en t sbe t  f o r a v a c u u m / w i n d o w i n t e r f a c e ,  t 1 2 f o r a w i n d o w /  
0 1 

liquid interface and t and t the corresponding coefficients for  the 
2 1 10 

r e v e r s e  order  of the media.  With the same subscript  notation r 
Am 

represents  the appropriate amplitude reflection coefficient. Then for 

a general r a y  the transmitted amplitude i s  

The contribution to the intensity f rom this r ay  is  

The total intensity transmitted through the cell  i s  obtained by summing 

over i j and k f rom z e r o  to  infinity: 

IT = C C C  Iijk 
l j k  

The t ransmit tances T and reflectances R a t  the interfaces can now 

be introduced and related to the t ransmission coefficients via the refractive 

indeces, n,  a s  follows: 



Figu re  7. Schemat ic  of Pos s ib l e  P a t h s  Through  a Typical  
Absorption Cell.  



L 

Whereas f o r  the reflectances 

2 
y R12 = r 

2 
R1O = r l o  12 

etc.  

We note a l so  that T = 1-R etc.  The refract ive index rat ios  all  
01 0 1 

cancel upon substitution of (5) and (6)  into (4) giving 

The corresponding transmitted intensity I for  the evacuated ce l l  i s  
T 

immediately obtained f r o m  (7) on replacing the subscript  2 by 0 giving 

On dividing (7) by (8) and taking logarithms 

the f 011 owing 

1 
@ = -  

R 
In 

An approximation t o  ( 9 )  differing in cases  of in te res t  by about 170is 



This formula was used in the reduction of data. Its suitability was 

checked by c ornparing the resulting absorption coefficient of liquid 

nitrogen with that obtained f rom data a t  two different path lengths. In 

this case ,  for  path length 4 1' we have f r o m  equations (7)  and (8) 

Similarly,  for  path length 2 

On dividing (1 1) by (12) 

Again, the quotient on the right hand side of equation (13) is ve ry  close 

to  unity regard less  of the value of s o  that, in this case ,  the da ta  r e -  

duction f ormula would be 

The absorption coefficient of liquid nitrogen was calculated 

f rom equation ( l o )  for data f r  om a path length of 25.4 m m  and f r o m  

equation (14) for data f rom path lengths of 25.4 m m  and 4 .1  mm. With 



the abs orption coefficient reaching a maximum value of 1 . 1  crn -1 a 
- 1 

maximum discrepancy of 0 . 0 3  cm res:llted between the two methods.  

This was considered to  be within experimental e r r o r  and so  the l e s s  

tedious approach of measurement  at  a single path length was adopted 

for a l l  other liquids. It may  be  appreciated that any e r r  or involved 

i s  of l e s s  consequence with polyethylene windows with their  lower 

refract ive index than with quartz .  

In order  t o  use equation (10) data were  required for the  var ious 

reflectances involved. The reflectance of the quartz windows in  a vacu- 

um was measured in a separa te  apparatus a t  liquid nitrogen tempera-  

ture;  the reflectance of high density polyethylene was calculated f r o m  

published figures (MIT, 1957) for  the dielectric constant using the 

Fr e snel equation for normal  incidence. Since polyethylene, l ike quartz ,  

has a low absorption coefficient throughout the f a r  infrared it i s  suffi- 

cient t o  use microwave measurements  of the dielectr ic  constant, E , and 

t o  a s sume  a frequency independent refractive index. However a cor -  

rection m u s t  be made for  low temperatures  on account of the l a rge  tern- 

pera ture  dependence of density (Corruccini  and Gniewek, 1961). This 

was done assum2ng invariance of the Clausius-Mossotti function, 

To calculate the reflectance a t  a windowlliquid interface,  it i s  

necessary  t o  know the relative refractive index of the window mate r i a l  

t o  the liquid. Again the absolute refractive index of a l l  liquids m e a s -  

ured could be obtained f r o m  published values of the microwave or d. c .  

dielectr ic  constant (Stewart, 1964; Guillien, 1938; Werner and Keesom, 

1926; van Itterbeelc and Spaepen, 1943; and McLennan, e t  a l . ,  1930) 

since these a r e  al l  weakly absorbing mater ia l s .  The absolute re f rac-  

tive index of the quartz was calculated f rom its reflectance while 

that for  polyethylene we already had from its dielectric constant. 



3.2 E r r o r s  

Systematic e r r o r s  in  calculating the absorption coefficient 

a r i s e  f rom non-linearity of the detector -amplifier-  recorder  system, 

f rom scat tered light, and f rom e r r o r s  in  path length measurement .  

Non-linearity has been checked and found to be within 0. 3 percent.  

Scattered light i s  a function of frequency and can best be checked by 

measuring the t ransmit ted signal of a sample a t  a frequency where 

complete extinction i s  known to  occur. However, a randomly selected 

t e s t  frequency does not exhaust the possibilities for scat tered light. 

Some indication of scat tered light was available f rom two of 

our  experimental runs i n  which complete extinction occurred.  In the 
- 1 

f i r s t ,  parahydrogen gave complete extinction at  390 c m  i n  a path 

length of 32. 5 mm. At this  frequency, the signal could not be distin- 

guished f rom that with s l i ts  closed and the scat tered light is  therefore  

estimated to  be l e s s  than 0 .3  percent. However, because of the width 

of the parahydrogen absorption peak, this figure conservatively only 

applies t o  that component of the scat tered light ar is ing f r o m  incomplete 

filtering of higher o rde r  radiation, i, e . ,  radiation of higher frequenci-s 

reflected by the grating in  second and higher orders .  

A second run i n  which complete extinction occurred was with 
- 1 

liquid methane i n  the frequency range 70 to 250 cm i n  a path length 

of 25.4 m m .  In this range scat tered light was generally l e s s  than 1 

percent although a n  occassional point a s  bad a s  6 percent appeared. 
- 1 

Again this  was a ve ry  broad ( -- 200 cm ) band and conclusions must  

be conservatively limited to higher order  radiation. 

Our findings a r e  in  general  agreement with the manufac turer ' s  

specifications which state that scat tered light i s  l e s s  than 1 percent 
- 1 - 1 

between 32 and 665 c m  except i n  the region 165 to 200 c m  where 
- 1 

i t  approaches but does not exceed 4 percent. Between 20 and 32 c m  



the manufacturer gives a n  upper l imit  of 10 percent.  

Pa th  length m e a s u r e n ~ e n t s  were made a t  room tempera ture  with 

the aid of a micrometer. The r r~a jor  uncertainties in  path length a r i s e  

f rom shrinkage on cooling down to  sample temperature and f rom the 

fact that, being in  a converging-diverging beam, the inf rared  r ays  do 

not in general  follow an  axial path thrc, lgh the cell, The total uncertain- 

t y  i n  path lerigth f rom these c a u s v s  I L  i :cns~dered to  h e  l e s s  ihan  1 

percent. 

Random e r r o r s  in the recorded signal a r e  by f a r  the m o r e  

serious.  The situation was aggrzrvatkd by the long period between 

recording signals with cell  empty and cell full, usually a s  long a s  
- 1 

1- lj2, hours. In tire frequency region above 32  cm , iluctuatlons in 

the signal of about 5 2 percent occurred in  a period of five to ten  
- 1 

minutes. Below 32 c m  fluctuations were often a s  grea t  a s  20 percent.  

It i s  normally not possible to average such long t e r m  fluctuations. 

F o r  a l l  points where absorption did not exceed 50 percent the 

combined e r r o r s  amount to 7 percent in  the absorption coefficient cal- 
- l 

culated f rom equation (4) for frequencies above 32 cm Below 
- 1 

32 c m  the data must  be regarded a s  of qualitative in te res t  only. 

Unfortunately peak absorptions for  nitrogen and hydrogen were recorded 

a s  high a s  90 percent in  the path lengths available. In this  case  the 

e r r o r  i s  dominated by the scat tered light problem, but an  upper l imit  

of 15 percent can be set. 

The experimental absorption coefficients a r e  plotted against  
- 1 

wave number ( rec iproca l  wavelength) in  units of c m  . Wave number 
- 1 

repeatability i s  estimated to be bet ter  than 1 c m  . A recent check 

of the manufacturers  calibration of the gratings was made by recording 

d rum readings a t  which higher o rde r  images of the mercury  g reen  

line were incident on the exit sl i t  of the monochromator. A worst  



- 1 systematic  e r roy  of 3 cm was recorded, while for m a s t  of the 
- I  

s-pei:irurr, 1.c m a s  less than I c:n Tkie e r r o r  i s  h;irdly s ig r~ i f i can~  

for the broad barxrls recorded here,  parricularly since the spectral. slit 
- 1 

width was sometimes a s  high a s  10 c n ~  

4. DISCUSSION 

The i~ikrleculal species investigated in  this work have one -chlng 

in common: they a r e  of zero  o r  low polarity (carbon monoxide has 

a smal l  permanent e lec t r ic  dipole rraornent; oxygen has a n  ever1 srnalier 

magnetic dipole moment. With these two exceptions they siiow iru 

infrared absorption spectra  in the gaseotls state at l a w  p res su res .  kt 

higher p res su res ,  say, of the o rde r  of 100 atr~iospbei-e;, some o; 3.. 

far infrared spectra  observed a r e  qualitatively s imilar  to zhose obses.,,,ed 

here (Boson~wor th  and Gush, 19t 5) and i ,  i s  fairly well estzblished 

that they have their  origin in  collision-induced dipoles, Thls has oile 

undesirable consequence: a s  with other propert ies  dependent on colii - 
sions there  i s  no theory applicable a t  densit ies encountered in  the l i q u i d  

s ta te ,  At this  stage, therefore,  a discussion must  remain fairly 

qualitative. 

Our data for liquid hydrogen a t  wave numbers between 20 and 
- 1 

250 cm a r e  new a s  a r e  those for liquids oxygen, carbon monoxide 

and methane. The f a r  infrared spectrum of liquid nitrogen and that 
- 1 

par t  of the spectrum of liquid hydrogen above 300 e m  have been 

published previously (Stone and Williams, 1965 and Kiss,  1959). 

4. 1 Liquid Hydrogen 

The spectrum of liquid hydrogen i s  the most interesting since it 

consists of two distinct pa r t s  each of which is strongly dependent on 
- 1 

the or tho-para composition. The weak band below 250 c m  (figure 8) 

i s  discussed elsewhere (Jones,  1969). It i s  considered to  be a 





translational band and i t s  intensity i s  roughly l inear  with the concen- 
- 1 

tration of ortho molecules in accordance with theory. Above 300 c m  
- 1 

(figure 9) i s  a strong band having a peak a t  390 c m  . This has  been 

identified previously a s  ar is ing from the pure rotational transit ion 

f r o m  the s tate  J = O  to J=2 of the para  molecules (Kiss  1959). We were 

unfortunately not able to record the second maximum observed by Kiss 
- 1 

a t  about 600 cm attributable to the ortho t ransi t ion J=143 since this  

was the high frequency limit  of our  polyethylene windows. 

The resu l t s  of Kiss  differ slightly f rom the present resul ts .  

While the J=0-+2 band i s  of typically Lorentzian shape in our case  

- although somewhat asymmetr ic  - Kiss1 s spectrum shows a pro-  
- 1 

nounced shoulder close to the low density Raman frequency of 354 c m  

(Stoicheff, 1957). Fur thermore ,  Kiss a l so  gives spectra  for the solid 
- 1 

and then the shoulder becomes a very narrow line (<4 cm width) 
- 1 

shifted only 1.2 c m  from the Raman frequency. Apparently our  

resolution was poorer and we were not able to show the two components 

of this band, namely: a pure rotational l ine and a translational sum- 

mation band according to Kiss. 

A discrepancy a l s o  exists in the value of the maximurn 
- 1 

absorption coefficient a t  390 c m  . F o r  para-hydrogen our peak 

absorption i s  some 4070 higher while for normal  hydrogen i t  i s  30% 

lower than Kis s ' s  resul ts .  These discrepancies a r e  well outside our 

estimate of experimental uncertainty and remain unexplained. 

4.2 Liquid Nitrogen 

Our spectrum for  liquid nitrogen (figure 1O)is quite s imi lar  to  

that obtained by Stone and Williams differing only in  the magnitude of 
- 1 

the peak absorption coefficient. The values of 1.08 and 1.66 cm 

respectively differ by f a r  more  than the total  uncertainty est imated 
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for our data. A possible explanation may l ie  in the difficulties men- 

tioned by Stone and Williams in connection with the presence of ice  

c rys ta l s  i n  their  liquid samples.  We too encountered such difficulties 

in  ea r l i e r  experiments  which showed la rge  absorption peaks a t  intervals  

over the ent i re  spectrum. We feel that in  the present  data this  problem 

has been entirely eliminated by the method of sample preparation 

described above. 

The band is quite s imilar  to that observed for compressed nitrogen 

gas (Bosomworth and Gush, 1965) for  which a quadrupole-induced pure 

rotational origin i s  fa ir ly  well accepted. The broad rotational l ines  

a r e  more  closely spaced than i n  the case  of hydrogen ( F o r  the selection 
- 1 - 1 

r u l e A J = 2 t h e s e a r e 8 . 0 c m  a n d 2 3 0 c m  r e s p e c t i v e l y ) a n d a l a r g e  

number of them a r e  superimposed to  form a continuous band. 

Bearing in  mind the low density l imitations of existing theory 

one can make a crude calculation of band shape based on the binary 

absorption coefficient. To do this one superimposes individual 

broadened lines of s imi lar  shape with relative intensities given, for  

example, by the formula of Colpa and Ketelaar (1958). We have done 

this  using the asymmetr ic  line shape suggested by Kiss and Welsh 
- 1 

(1959) with a half width a t  half intensity of 20 cm (Ketelaar and 

Rettschnick, 1964). The calculated band does not give a good fit a t  

all frequencies but predicts  the band maximum fairly well; we calculate 
- 1 - 1 

60 c m  compared to  about 65 c m  f rom experiment. 

4. 3 Liquid Oxygen 

The spectrum of liquid oxygen, Figure 11, i s  quite s imi lar  to  

that of liquid nitrogen. However, the peak absorption coefficient i s  

only 1 / 3  of that for  nitrogen and the width of the band i s  grea ter .  This 

difference was a l so  noted by Bosomworth and Gush (1965) for  the compres-  

sed gases.  They point out that the difference i s  related to  the weaker 



quadrupole moment of the oxygen molecule and the resultant weaker 
4 

induced dipole moment. In Table I the quantity ~ $ 0  i s  l isted for  
- 

different molecules. Here Q i s  the quadrupole moment, a the mean 

polarizability and 0 the molecular diameter  parameter  of the Lennard- 

Jones potential function. This quantity i s  a useful measure  of the 

induced dipole moment and the relative magnitudes of the absorption 

coefficient in  figures 10 and 11 a r e  in accord. 

An explanation i s  demanded by the presence of a permanent 

magnetic dipole moment for  oxygen, a l so  l isted in  Table I. Rotational 

spectra  i n  th is  wavelength region have been observed in the low p r e s s u r e  

gas  (Gebbie e t  a1 1969) and attributed to magnetic dipole transit ions.  

F r o m  the value given in Table I one might expect the resulting absorp-  

tion coefficient in the liquid to be even grea ter  than that shown for  

nitrogen in  figure 10. But in  fact these magnetic dipole rotational 

transit ions a r e  "approximately forbidden" and the value of the magnetic 

dipole i tself  does not te l l  the complete story; in  o rde r  to observe them 

Gebbie e t  a1 used a path length of 180 m and the pure oxygen gas p r e s s u r e  

was 3 atrn. Assuming linearity of intensity with density the equivalent 

liquid path would be about 600 m m  compared to  25.4  m m  used here .  

Thus the magnetic dipole transit ions appear to  give only a minor con- 

tribution in  figure 11. Similarly,  i n  Gebbie' s measurements  the colli- 

sion-induced transit ions would have contributed only a minor  pa r t  of 

the intensity because this  par t  va r i e s  a s  the square of the density. 

An envelope was again calculated a s  for nitrogen, but here a half 

- 1 
width of 50 c m  was required in order  to obtain a maximum a t  the 

- 1 
observed frequency of 80 c m  . 
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4.4 Liquid Carbon Monoxide 

The f a r  inf rared  spectrum of liquid carbon monoxide, Figure 12, 

i s  composed of a sharp  peak superimposed on a diffuse background. 

The carbon monoxide molecule i s  s imilar  to the nitrogen molecule in 

that i t  has the same m a s s  and the same number of electrons.  In fact 

the molecular constants important in collision induced absorption a r e  

a l so  s imi lar  a s  seen f rom Table I. It i s  thus to  be expected that the 

spectra  would a l so  be s imilar ,  a s  indeed they a r e  toward the higher 

frequencies. The existence of a small  permanent dipole moment for 

GO, however, i s  considered to  be the source of the only major  dif- 

ference: i. e . ,  the sha rp  low frequency peak. However, even this  

smal l  permanent dipole moment i s  an o rde r  of magnitude l a rge r  than 

the quadrupole-induced dipole and i t s  effect should dominate that of 

the induced dipole moment. This can be seen from Table I. On 

account of this permanent dipole moment pure rotational absorption 

must  take place according to the selection rule A J= l  in addition to 

A J = 2  from the induced dipole. F o r  this process ,  one can calculate 

the relative intensit ies of the rotational l ines (Herzberg, 1950) to find 

the position of peak absorption. F o r  liquid CO a t  80.9 K we find the 

transit ion from J=6  to J=7 the most  intense. The corresponding f r e -  
- 1 - 1 

quency i s  27 cm in  fair  agreement with the value of 35 c m  f rom 

figure 12. 

4. 5 Liquid Methane 

The spectrum for  liquid methane i s  presented in  figure 13. 

Some comment on this  spectrum i s  called for because the methane 

molecule has neither permanent dipole nor quadrupole moment by 

virtue of i t s  te t rahedral  symmetry. The lowest o rde r  multipole allow- 

ed by symmetry i s  the octopole and this has  been calculated f rom theory 





and f r o m  experimental second vir ia l  coefficients (Spurling, et. al., 

1968). An o rde r  of magnitude estimate of the octopole-induced dipole 

moment a t  the point of c losest  approach of two molecules can  be made 
5 

f rom the quantity 0 a / o  ( see  Table I ) ,  The resu l t s  would lead one to 

expect pure rotational absorption intensities comparable to those ob- 

served for  nitrogen and thus we conclude that i t  i s  ent i rely feasible 

that the spectrum a r i s e s  pr imar i ly  from collision octopole -induced 

pure rotational transit ions.  

Since our measurements  were completed the fa r  infrared spec- 

t r u m  of compressed methane gas at  room tempera ture  has  been pub- 

l ished by Birnbaum and Rosenberg (1968) who have calculated the 

octopole moment from their  data. Their spectrum i s  s imi lar  in  form 

to ours  but a s  would be expected for pure rotation a t  a higher tempera-  

tu re  it i s  more  intense and the maximum is a t  a higher frequency. 

4.6 Liquid Argon 

- 1 
A t  wave numbers  below 250 cm no significant difference could 

be observed in  the t ransmiss ion  through path lengths of 4.1 m m  and 

2 5 . 4 m m .  We conclude that compared with the other five liquids 

studied the absorption coefficient i s  negligible. This i s  i n  accord with 

the findings of Kiss and Welsh (1959) for compressed noble gases  at  

room temperature and up to 180 atm. p res su re  and wave numbers  
- 1 

g rea te r  than 300 c m  . It i s  also in  accord with the theory of induced 

absorption (Pol l  and van Kranendonk, 1961); no induced dipole can 

resul t  f rom the collision of identical noble gas  atoms. 

5. APPLICATIONS-ABSORPTION O F  THERMAL RADIATION 

F r o m  a pract ical  point of view i t  i s  of in te res t  t o  be able to 

descr ibe the absorption of thermal  radiation in  a liquid o r  dense vapor. 

Unfortunately this becomes involved with system parameters  related 



to  the sources  of radiation. However to i l lustrate  how this might be 

done in  a typical case  we calculate here the modified Planck mean  

absorption coefficient (Sparrow and Cess,  1966) defined a s  

Here n i s  the wave number and I (n, T)  i s  the black body spec t ra l  
b 

intensity for temperature T. This quantity i s  the co r rec t  mean  absorp-  

tion coefficient in  optically thin conditions f o r  incident black body radia-  

tion of tempera ture  T when the fluid i s  a t  temperature T The quantity 
F' 

calculated when T = T i s  the Planck mean absorption coefficient and 
F 

i s  seen to  be a property of the fluid alone; i. e . ,  contains no system 

parameters .  However, this quantity i s  only of in te res t  in  emission, 

and, in the present ,  case  a t  low tempera tures  i s  of l i t t le use. The modi- 

fied coefficient a s  defined here  contains only one sys tem parameter ,  T. 

F o r  a typical problem we take T = 300 K and calculate 

K (20 K, 300 K) for liquids pa ra  and normal  hydrogen. To do this  
P 

with the data of figures 7 and 8 i t  i s  necessary  to make an  extrapola- 

tion on the high frequency side. We have determined that the high 

frequency side of the para-hydrogen J=O line i s  representable by the 

Lorentz line profile within experimental e r r o r  a s  has been observed 

frequently in  connection with rotational lines. Thus we have extrapo- 

lated using the relation 

bb a 
max 

a ( n )  = 
( n  - n )' +- b2 

0 



where u i s  the maximum value of the absorption coefficient a t  the 
max  - 1 

line center,  n and b i s  the half width (86 cm ). F o r  normal  
0' 

hydrogen we have had to  est imate U for the J= 1 l ine,  the peak 
max 

of which was not observable i n  our  experiments. We have taken the 

same ratio for the J= 1 line to the J = O  line a s  observed by Kiss,  i ,  e ,  , 

1.88: 1. The integrals  were evaluated numerically and were  ca r r i ed  

to a high enough wave number that the residual contribution became 

negligible. 
- 1 

For  para-hydrogen we calculate K = 0.53 c m  and fo r  normal  
- 1 

P 
hydrogen K = 0.40 c m  Thus for  para-hydrogen 63% of the radiation 

P 
i s  absorbed in a path length of 1.9 cm, while for normal  hydrogen the 

same  absorption occurs  in  a path length of 2 .5  cm. It will. be appre - 

ciated that for  oxygen, nitrogen and carbon monoxide a-bsorption of 

the rma l  radiation will be considerably l e s s  since only a narrow wave 

number region i s  covered by the observed spectra.  Liquid methane 

on the other hand would appear  to be an intermediate case.  It i s  in- 

terest ing to  note that the fundamental band of liquid hydrogen i n  the 
- 1 

range 4000 - 5000 c m  only accounts for a t  most  3 p a r t s  p e r  million 

of the 300 K black body radiation and i s  thus of negligible importance 

i n  radiative t r ans fe r  f rom such a source compared to the fa r  infrared 

band described here.  

6. CONCLUSIONS 

We have measured  the f a r  inf rared  absorption coefficient of six 

cryogenic liquids a t  tempera tures  close to their  normal  boiling tempera-  

tures .  A var iety of behavior was found which could be most ly related 

to the molecular constants which determine the induced e lec t r ic  dipole 

moment. No theoretical relationship i s  available to calculate the 

absorption coefficient at  liquid densit ies,  but the data a s  such should 

be useful in applications such a s  the calculation of absorption of thermal  



radiation. A s  a n  example of this the modified Planck mean absorption 

coefficient was calculated for normal  and para-hydrogen and a 300 K 

source. 
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